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The National Aeronautics and Space Administration’s (NASA) Wallops Flight Facility 

(WFF), part of the Goddard Space Flight Center (GSFC), has developed a unique pointing 

control system for instruments aboard scientific balloon gondolas. The ability to point large 

telescopes and instruments with arc-second accuracy and stability is highly desired by 

multiple scientific disciplines, such as Planetary, Earth Science, Heliospheric and 

Astrophysics, and the availability of a standardized system supplied by NASA alleviates the 

need for the science user to develop and provide their own system. In addition to the 

pointing control system, a star tracker has been developed with both daytime and nighttime 

capability to augment the WASP and provide an absolute pointing reference. The WASP 

Project has successfully completed five test flights and one operational science mission, and 

is currently supporting an additional test flight in 2017, along with three science missions 

with flights scheduled between 2018 and 2020. The WASP system has demonstrated 

precision pointing and high reliability, and is available to support scientific balloon missions. 

I. Introduction 

HE WASP consists of a pointing control system (PCS) and a star tracker subsystem. The pointing system 

includes several standardized mechanical assemblies and electronics subsystems. It is designed to work in 

conjunction with the standard NASA gondola rotator, which is an azimuth control device that is located above the 

gondola which provides rough azimuth positioning with an accuracy of approximately one degree. The other 

components of the PCS are an inner and outer gimbal frame, a set of four WASP hubs, a fiber optic gyroscope, the 

avionics susbsystem, a trim balance subsystem, and a latch mechanism. All of these subsystems have successfully 

demonstrated their capabilities on multiple flights, and have a standardized design that can be replicated and used 

without any new engineering design effort. The star tracker, known as the Camera Attitude Reference Determination 

System (CARDS), consists of a commercial camera head and lens, commercial processor with custom software, and 

a baffle for stray light rejection. In 2016, the WASP PCS and CARDS were used for the first time operationally on a 

science mission called X-Calibur, a hard X-ray telescope with a Principle Investigator (PI) from Washington 

University at St. Louis. X-Calibur is currently being prepared for an Antarctic Long Duration Balloon (LDB) 

mission, and the WASP Team is supporting two other science missions at the same time. The Planetary Imaging 

Concept Testbed Using a Recoverable Experiment – Coronagraph (PICTURE-C) first flight is scheduled for 2018 at 

either Fort Sumner, NM or Palestine, TX, and the Gondola for High Altitude Planetary Science (GHAPS) first flight 

is scheduled for 2020. The three science missions have completely different science objectives and demonstrate the 

versatility of the WASP system and the ability of the small WASP team at WFF to provide support efficiently. 

II. System Description 

The WASP PCS and CARDS subsystems were described in detail in a previous AIAA paper.1 The PCS works in 

conjuction with an electronically driven azimuth positioning system above the gondola, which is a standard NASA 

support system typically used to orient gondola solar panels toward the sun in flight. For WASP, the gondola rotator 

provides rough positioning toward the desired targets with an accuracy of approximately one degree. The other 
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components of the WASP System are mounted on the gondola, and are located on either the external gondola frame 

or on the pointed structure.  

The PCS uses two large gimbal frames to provide pitch and yaw articulation. The standard WASP frames are 

constructed of aluminmum box tubes riveted together. The outer gimbal frame supports the outer surfaces of the 

pitch control hubs, and the inner frame is attached to the inner surfaces of the pitch hubs and holds the yaw hubs 

which interface to the pointed structure (Fig.1). The gimbal frame hub mounts are machined with a tolerance of +/- 

0.001 inch to precisely align the hubs which minimizes the torque needed to control the system. The pointed 

structure is mounted within the inner frame, and is balanced in all three axes so the center of gravity is located 

exactly where the two hub axes intersect. 
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Figure 1: WASP Gimbal Frames 

 

There are two types of hubs used by the PCS, the motor hubs and the resolver hubs. One of each is used for each 

axis. The hubs include a constantly rotating center shaft design which eliminates static friction in the bearings. The 

inner and outer halves of the hub are attached to the central shaft through four sets of bearings, and the shaft is 

continuously rotated by a small electric motor connected to a gearhead to reduce the rotation rate.  

 The WASP motor hubs include a large diameter brushless Direct Current (DC) torque motor, which provides the 

drive forces to the system. Figure 2 shows a resolver hub, which includes a standard brushless angle resolver which 

provides an angular measurement between the rotor and stator halves of the hub. 

 

 
Figure 2: WASP Resolver Hub 

 

The PCS also consists of a number of electronics subsystems that are typically mounted on the pointed structure. 

Some of the electronics are commercially procured including the PCS flight computer and the CARDS flight 

computer. The remainder of the PCS electronics are custom designed and fabricated to perform the various required 

functions. 
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The fiber optic gyroscope is also a commercially procured item which provides position and acceleration outputs 

to the WASP flight computer for use by the control system algorithm. Instrument attitude is computed by integrating 

incremental angles (delta-Theta) output from the LN251 system. Control torques are computed using a modified 

Proportional-Integral-Derivative control law in each axis. 

The remaining PCS subsystems consist of static and dynamic balance assemblies and the latch mechanism. The 

static balance assemblies are used to trim the balance prior to flight, and the dynamic balance subsystem consists of 

motor driven weights that can compensate for changes in pointed structure balance during the flight (Fig. 3). The 

latch mechanism secures the telescope, or other pointed structure, to the external gondola framework during the 

launch and ascent portions of the flight, releases the pointed structure when at float, and then engages and locks the 

structure in place prior to the termination of the flight. The system has full redundancy, with two independent 

methods for both uncaging and caging. (Fig. 4). 

 

 
Figure 3: Dynamic Balance Weight 

 
Figure 4: Caging System 

 

The WASP CARDS star tracker camera subsystem includes a 2.8 megapixel camera, a C-mount lens with 100 

mm focal length, and a custom baffle with an exclusion angle of approximately 20 degrees. The CARDS camera has 

a field of view of 5.9 degrees by 4.4 degrees, and has demonstrated ability to image stars dimmer than magnitude 5 

during the daytime at balloon float altitude (Fig. 5). 
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Figure 5: CARDS Star Tracker 

 

III. X-Calibur Mission 

A total of five WASP test flights were conducted from 2011 through 2014. All flights were conducted from the 

Fort Sumner, New Mexico launch site, and had flight durations ranging from 4 hours and 45 minutes to over 15 

hours. Details of the gondola configurations and performance of the system are described in a previous AIAA 

paper1, and tracking performance with pitch and yaw errors of less than one arc-second were observed. 

In 2014, the WASP Team began a collaboration with the X-Calibur Science Team to provide the PCS and 

CARDS for their next two science missions. X-Calibur measures the linear polarization of hard X-rays in the energy 

range of 25-70 keV. To make these measurements, X-Calibur uses a 255 shell X-ray focusing mirror provided by 

Dr. Takashi Okajima at the NASA GSFC X-ray Astrophysics Laboratory, and a rotating polarimeter provided by 

Washington University in St. Louis (WUSTL). Dr. Henric Krawczynski at WUSTL is the Principal Investigator (PI) 

for this mission, and two flights were scheduled to conduct the science mission. 

The pointed structure design for X-Calibur was challenging, as a very rigid structure was needed to maintain 

alignment between the focusing X-ray mirror and the detector located 8 meters away. The alignment between these 

two elements needed to be maintained during flight with an accuracy of better than 1 millimeter. The Science Team 

designed and developed a truss structure made of carbon fiber tubes and aluminum joints with honeycomb 

bulkheads at each end to support the science instruments and WASP subsystems (Fig. 6). 

 

 
Figure 6: X-Calibur Truss and Gondola Design 
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X-Calibur was designed to support two flight locations. The first flight was conducted from Fort Sumner, New 

Mexico, and used primary batteries as a power source, and used line of sight communications with ground stations 

for telemetry and commands. The second flight, scheduled for December 2018 in Antarctica, will use solar panels as 

show in Figure 6 to generate power, and will use satellite communications for telemetry and commands. 

X-Calibur was launched on September 17, 2016 and had a total flight duration of 24 hours and 37 minutes. 

During the long flight, WASP was used to point at X-ray targets including Crab Nebula, Scorpius X-1, Cygnus X-1, 

and GRS1915+105. WASP provided excellent tracking capability with sub arc-second tracking errors similar to 

previous flights (Fig. 7). The WASP absolute pointing performance was not optimal due to misalignment between 

the star tracker and the inertial rate unit (IRU), and was further degraded during daytime by a high ambient light 

background which prevented the star tracker from consistently maintaining lock.  

 
Figure 7: X-Calibur Tracking Error 

 

The effects of the misalignment between the IRU and star tracker can be seen in Figure 8, which shows the 

residual differences between the star tracker and the Extended Kalman Filter (EKF) attitude solution. The 

oscillations seen in the CARDS residual errors coincide with roll motions around the boresight originating from the 

natural pendulous motions of the gondola, flight train and rotator motions. Roll coupling into the pitch and yaw axes 

indicates a misalignment between the star tracker and the IRU. 

 
Figure 8: Star Tracker Residual Errors during X-Calibur Flight 
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The misalignment was identified by post flight batch processing of five to ten minute segments of CARDS and 

IRU pointing data. Since the flight, a misalignment correction technique has been developed to eliminate the roll 

coupling, and ground testing has been successfully performed demonstrating the technique. 

IV. Other Missions with WASP support 

In addition to the on-going support of X-Calibur, and the preparations for re-integration and the Antarctic long 

duration flight in December 2018, The WASP Team is supporting two other science missions, and a 2017 Test 

Flight effort. 

A. Planetary Imaging Concept Testbed Using a Recoverable Experiment – Coronagraph (PICTURE-C) 

The PICTURE-C mission plans to directly image and spectrally characterize dust and debris orbiting nearby 

stars with the possibility of discovering bright, gas giant exoplanets. The PI is Dr. Supriya Chakrabarti from 

University of Massachusettes at Lowell (UMASS Lowell). To characterize exoplanetary dust, PICTURE-C will use 

a 24 inch telescope and an instrument called a high-contrast coronagraph to directly image the inner 1 to 5 AU of 

nearby stellar systems. This instrument uses a focal plane mask and extreme adaptive optics to attenuate the starlight 

so that the faint glow of dust and planets can be seen. 

The Preliminary Design Review (PDR) for PICTURE-C was conducted at Wallops on August 4, 2016, and the 

Critical Design Review (CDR) is scheduled for 2017. The gondola mechanical design (Fig. 9) uses the same 

external gondola structure design that was developed at WFF for X-Calibur, and the PCS makes use of all the 

standard mechanical and electronic subsystems flown on earlier flights. This demonstrates the cost effective and 

efficient approach that WASP can provide for science support. 

 
Figure 9: PICTURE-C Gondola Design 

 

PICTURE-C plans to fly two balloon missions. The first flight is scheduled for 2018 from either Palestine, Texas 

or Fort Sumner, New Mexico. The second flight is planned for the fall of 2019 from Fort Sumner. 

B. Gondola for High Altitude Planetary Science (GHAPS) 

The other project currently being supported by WASP is GHAPS. This project is managed by Monica Hoffman 

at NASA Glenn Research Center (GRC) and includes an Optical Telescope Assembly (OTA) to be provided by 

NASA Marshall Space Flight Center (MSFC). GHAPS will provide a re-useable balloon platform to meet NASA 

Planetary Science goals and objectives as outlined in the NASA Decadal Survey. It includes a 1 meter diameter 
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primary mirror which can be optimized for either infrared or ultraviolet and visible observations. GHAPS is 

designed for a minimum of five flights with low cost refurbishment between each flight (Fig. 10). 

 
Figure 10: GHAPS Gondola Preliminary Design 

 

One of the challenges of the GHAPS project is to design and develop a gondola with a large optical aperture that 

meets the stringent mass requirements to fly on a NASA Super Pressure Balloon (SPB). The total mass available for 

science flight hardware on a SPB is approximately 400 kg. less than on a conventional zero-pressure balloon. 

The WASP Team is making several design modifications to their standard systems to support the GHAPS 

configuration. The large primary mirror exceeds the diameter capability of the standard WASP inner and outer 

gondola frames, so an extra large (XL) frame has been designed to accommodate the OTA. In order to minimize the 

increase in mass of the larger frames, the inner gimbal frame will be constructed from machined aluminum instead 

of aluminum box tubes (Fig. 11). The larger frames will provide 1.34 meter of vertical clear space between the two 

WASP yaw hubs, where the WASP standard extended inner frame provides one meter vertical space. 

 
Figure 11: WASP Gimbal Frames for GHAPS 

 

The WASP Avionics locations are also being modified to support GHAPS. Typically the PCS and CARDS flight 

computers are mounted on a main avionics deck located on the pointed structure along with the other control and 

monitoring electronics. For GHAPS, the project requested WASP to minimize the amount of electronics mounted on 

the OTA, which minimizes the thermal input to the telescope structure. As a result, the GHAPS configuration will 

consist of the CARDS flight computer, a video converter circuit, an H-Bridge driver circuit, and a housekeeping 

data acquisition circuit on the GHAPS OTA, which will reduce the power consumption of WASP components on 
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the OTA by approximately 40 watts. The remainder of the WASP Avionics Deck mounted electronics will be 

mounted on the gondola external structure. 

The other major change being made by WASP to support GHAPS is the star tracker baffle design. On previous 

flights the star tracker was mounted near the front edge of the pointed structure, and a small baffle is used to keep 

out stray light. The standard light baffle tube dimensions are approximately 15 cm in diameter and 30 cm in length. 

Due to the star tracker mounting location on the OTA, a much larger baffle tube approximately 40 cm in diameter 

and 1.2 meter in length is being designed. 

C. WASP 2017 Test Flight 

The 2017 Test Flight is scheduled for September in Fort Sumner, New Mexico, and will demonstrate 

improvements to the star tracker centrioding algorithm, and the misalignment correction technique. In addition, the 

flight will demonstrate the relocated electronics in the GHAPS configuration, and will also include the larger star 

tracker baffle design that is needed by GHAPS. 

In order to minimize cost and development time, the same external gondola design used for X-Calibur and 

PICTURE-C will be used for the test flight. Also, the pointed structure will be based on the same 25.4 cm square 

steel tube that was used on the first two WASP test flights (Fig. 12). 

 
Figure 12: WASP 2017 Test Flight Design 
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